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The results of modeling of the hydrodynamics and heat transfer in a boundary layer on a plane constantly 

movtng surface are presented. Specfic features of temperature fields are studied as functions of  the boundary 

conditions and the Prandtl number. Detailed tables of numerical solutions are given. 

Introduction. The extensive theoretical and experimental studies of the characteristics of hydrodynamics 

and heat transfer in boundary layers on plane surfaces are due to the wide range of engineering applications. Hence, 

the constant interest of specialists in the problem is understandable. This is expressed in the appearance of a vast 

number of works of a computational and experimental character [1, 2 ]. However, in spite of the large volume of 

studies, many important problems have no yet been clarified completely. A case in point is, for example, the effect 

of a moving wall on the dynamics of temperature fields for different boundary conditions. In analyzing this problem, 

attention is mainly paid to the hydrodynamic aspects [3-11 ]. 

In what follows we present the results of a combined numerical simulation of hydrodynamics and heat 

transfer on horizontal plane motionless and constantly moving surfaces within the framework of a model of a laminar 

boundary layer under different temperature boundary conditions within a wide range of Prandtl numbers 

(0.001 _< Pr _< 1000). 

Basic Equations.We introduce the Cartesian coordinates system x0y. The flow in the boundary layer is 

taken to be stationary, laminar, and plane. Then the vector components U, V and the fluid temperature T are only 

functions of the coordinates x and y. On the surface of a plate we assign the boundary condition of the constancy 

of temperature Tw (an isothermal surface) or of heat flux qw (the second-kind boundary condition), and also study 

specific features of heat transfer in a fluid flow along an adiabatic wall. The actual temperature of a moving plate 

can be higher or lower than the temperature of surrounding medium T~ (or oncoming flow), depending on whether 

the fluid is heated or cooled by contact with the surface. Then the basic equations describing forced convection on 

a horizontal surface are written in the form: 

OU OV 
Ox +-~y O, 

u--oU + v OU = v O2U 

Ox 05' OY 2 ' 

(1) 

0T  v c)2T ua~T+ v _ 

O.,: Oy Pr Oy 2" 

The boundary conditions for the velocity field are 

y = 0 : V = U = 0 ; y--, do : U --, U= (motionless surface) ; (2) 
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TABLE 1. Comparison of the Values of -h ' (O,  Pr) for the Case of an Isothermal Surface 

Pr 

0.0001 

0.001 

0.01 

0.05 

0.1 

0.3 

0.5 

0.7 

0.72 

0.73 

1 

2 

5 

6.7 

7 

10 

50 

100 

500 

I000 

10,000 

I121 

0.005588 

0.017316 

0.051588 

0.140029 

0.332057 

0.728136 

1.57183 

3.38707 

7.29734 

Uw- 0, U| ~ 0 

[14] 

0 . 0 0 5 5 8 8  

0.017316 

0.051590 

0.140032 

0.332058 

0.728148 

1.571855 

3.387096 

7.297423 

present work 

0.017316 

0.051589 

0.105106 

0.140029 

0.214760 

0.259293 

0.292680 

0.295635 

0.297092 

0.332058 

0.422308 

0,576689 

0.636472 

0.645922 

0.728141 

1.247287 

1.571833 

2.688271 

3.387085 

Uw r O, Uo, = O, 

present work 

0.007990 

0.038269 

0.072863 

0.186256 

0.274960 

0.349236 

0.356084 

0.359474 

0,443748 

0.683259 

1.153872 

1.354449 

1.387033 

1.680293 

3.890918 

5.544663 

12.52013 

17.74611 

y = 0 :  

Then we write (the temperature field): 

an isothermal wall 

an adiabatic surface 

V = O ,  U = U w ;  y - * o o :  U-* 0 (moving surface). 

y = 0 :  T =  T w ,  y - *  oo: T - * T o o ;  

OT 
y = O : - - = 0 ,  y - ,  oo: T --, T~o ; 

Oy 

a constant heat flux is assigned on the plate 

(3) 

(4) 

(5) 

a T  
y =  O: - k ~ y  = q w ,  y .-, oo. T -* T ~  . (6) 

If the function AT is proportional to x E, then partial differential equations 11) can be reduced to the system 

of ordinary differential equations 

1 2 ~/'h 0 (7) / ' " + f f ' / 2 = 0 ,  ~ r h ' +  f h ' -  = 

by self-similar variables which are determined as follows: 
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TABLE 2. Compar ison  of the Values of 1/h(O, Pr) for the Case of a Constant  Heat  Flux on a Wall 

Pr 

0.0001 

0.001 

0.01 

0.05 

0.1 

0.3 

0.5 

0.7 

0.72 

0.73 

I 

2 

3 

[131 
D 

0.077558 

0.458970 

U~ = O, U| ~ 0 

[141 

0.008730 

0.026762 

0.077559 

0.200655 

0.301241 

0.405894 

0.458971 

0.666371 

present  work 

0.026762 

0.077558 

0.152949 

0.200654 

0.301239 

0.361003 

0.405894 

0.409871 

0.411832 

0.458971 

0.581128 

Uw # O, U|  

present  work 
m 

0.015887 

0.074532 

0.138930 

0.336468 

0.482347 

0.601533 

0.612436 

0.617829 

0.751177 

1.126765 

5 

6.7 

7 

10 

50 

100 

500 

1000 

10,000 

0.997879 

2.15194 

w 

w 

0.885620 

0.997888 

2.151968 

4.636736 

9.989653 

0.791177 

0.872722 

0.885622 

0.997883 

1.707830 

2.151968 

3.680130 

4.636729 

1.863085 

2.177220 

2.228269 

2.687895 

6.157147 

8.754046 

19.71000 

27.91869 

/ 2 f  1/2 1/2 E V' ( u . v )  1 ( n )  x n = ( U . v )  ~ / 2  - = , x y ,  A T =  T . h ( n )  x . (8) 

Note  tha t  the power  i ndex  e = 0 (T* = ATw) c o r r e s p o n d s  to an i so the rma l  wall ,  e = 1 / 2  (T* = 

q w ( v / U . ) t / 2 / k ,  to a surface with a constant  heat  flux, and e = - 1 / 2 ,  to a l inear heat  source with power Q on an 

adiabat ic  plate (T.  = Q / C p p ( U . v ) l / 2 ) .  Relat ions (2) and (3) are t ransformed to 

/ ( 0 )  = O, f '  (0) = O, / '  (~o) = 1 (motionless surface) ; 

Similarly,  for Eqs. (4)-(6) 

f (O)  = 0 ,  f ' ( O )  = 1, f ' ( o ~ )  = 0  (moving p la te ) .  

a) h(O) = l , h(oo) = O, 

(9) 

b) h' (0) = O, h (oo) = O, (10) 

c) a ' ( 0 ) = - l ,  h(oo)=0. 

Moreover,  in case b) the solution must also satisfy the normalizat ion condit ion 

o o  

.f /'hart = l. 
o 

(11) 
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TABLE 3. Comparison of the Values of h(0, Pr) for the Case of an Adiabatic Surface 

Pr 

0.001 

0.01 

0.05 

0.1 

0.3 

0.5 

0.7 

0.72 

0.73 

1 

2 

5 

6.7 

7 

10 

50 

100 

500 

1000 

Uwffi0, U| * 0  

{15l 

0.01785 

0.05660 

0.18346 

0.53729 

2.26722 

13.15523 

present work 

0.017847 

0.056604 

0.128062 

0.183468 

0.331373 

0.441989 

0.537291 

0.546258 

0.550711 

0.664114 

1.016264 

1.822324 

2.203827 

2.267671 

2.863778 

8.302557 

13.16494 

38.46066 

61.04569 

Uw ~ O, U**- O, 

present work 

0.622135 

0.635404 

0.651559 

0.712010 

0.767004 

0.817714 

0.822584 

0.825009 

0.887500 

1.083597 

1.511132 

1.701329 

1.732488 

2.015207 

4.196362 

5.843280 

12.80976 

18.03368 

Results of Calculation. The nonlinear two-point boundary-value problem was solved numerically within the 

framework of the standard Runge-Kut ta  scheme by reducing (7), (9)-(11) to the Cauchy problem. The lacking 

parameters at different values of the Prandtl numbers were determined by the forecast-correlation method and ace 

presented in Tables 1-3. Using the notation of the local coefficient CI = rw/pU2./2, we obtain the following complex 

(Rex = U.x /v )  (Rex = U.x/v) 
C ~ 1 / 2  I Kex = 2f" (0) , 

which characterizes friction on a wall. Using the notation of the local Nusselt number Nux, we 

dimensionless temperature complexes 

Nu x Re x l / 2 

- 1 / 2  
Nu xRe x = l / h ( 0 ,  Pr) 

= - h' (0, Pr) (isothermal surface) " 

(a heat flux qw = const is assigned on the wall); 

(12) 

introduce the 

(13) 

T w - T ~  ~ 1 / 2  
~-. xe  x = h (0, Pr) (adiabatic wall), 

which make it easy to determine and estimate the effect of different parameters and factors on the rate of heat 

transfer. 
Since in the case of the boundary conditions (2) f"(0) = 0.332059, and for version (3)/ 'C0) = -0.443748 

(the sign "minus" denotes that the plane surface possesses propulsion), the coefficient CIReLx "2 for the boundary 

layer on a constantly moving surface exceeds the value of the same quantity for the boundary layer on a motionless 

surface by 34%. A similar picture is also observed for the temperature fields: heat transfer increases with the 

Prandti number Pr (Pr > 0.5). The sharpness of this increase is enhanced on passing to large Prandtl numbers. 
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This is due to the fact that at Pr >> 1 the following asymptotic estimates of the change in the quantities 

Pr) and l / h (0 ,  Pr) are valid: 

a moving surface 

a motionless wall [14 ] 

- h' (0 ,  Pr) = 0.564190 Pr 1/2,  

-h ' (0 ,  

1 / h  (0,  Pr) = 0.886227 pr 1/2 , (14) 

- h' (0,  Pr) = 0.338720 Pr 1/3 l / h  (0 Pr) = 0.46368 Pr I /3 , , ~ 
(15) 

Formulas (14) are obtained on the assumption that at a large Prandtl number, when the boundary layer 

thickness is small compared to the thickness of the hydrodynamic layer, the function f ( n )  entering into the velocity 

notation can be replaced by the approximate relation f ( n )  = n which is valid for those changes of lhe coordinate n 

which correspond to the temperature layer region for Pr >> I. For fluid flow along an adiabatic plate we have 

U w = 0 ,  Uo~ ~ 0 h (0,  Pr) = 0.610387 Pr 2/3 �9 

U w ~ 0 ,  U~o = 0  h ( 0 ,  Pr) = 0 . 5 6 4 1 9 P r  I / 2 .  

(16) 

Comparison of the results of numerical and analytical solutions shows that equalities (14)-(16) adequately 

describe the character and lhe laws governing thermal processes in plane boundary layers for Pr > 50 (the 

discrepancy between the exact and approximate values does not exceed 5%). 

N O T A T I O N  

U, V, longitudinal and transverse velocity components; x, y, longitudinal and transverse coordinates; T, 

temperature; Tw, T| temperatures of wall and surrounding medium (oncoming flow) ; v, k, coefficients of kinematic 

viscosity and heat conduction; Pr, Prandtl number; U,, characteristic velocity (U, for a boundary layer on a 

motionless surface and Uw for a boundary layer on a constantly moving plate); p, density; C 0, heat capacity at 

constant pressure; AT = T - T~, excess temperature. 
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